
Alarms Reset Considerations
Robert Goodwin
Thu, Oct 1, 2009

Linac alarm scan
The Linac control system has provided alarm scanning support of all channels at 15 Hz ever 

since the first distributed front end architecture was installed in 1982. A design requirement was to 
be able to inhibit beam on the next pulse if any of a selected set of channels was found to be out of 
tolerance. To that end, a beam inhibit bit is included in the alarm flags word of each channel. This 
note describes some considerations that need to be understood by Linac users, especially including 
the action of an alarms reset, normally initiated by an Acnet “Big Clear” message. But first, 
examine a recently recognized problem and suggested solutions:

Problem
If Linac beam is currently inhibited at a time when an alarms reset is performed, there is a 

danger that a channel whose beam inhibit flag is set will cause a delay in reasserting the beam 
inhibit control line until its tries_now count runs out. This has been observed recently to allow a 
beam pulse to be accelerated even when a channel is out-of-tolerance. We need to fix this.

Solution 1
One solution is a change in the logic so that during the alarms reset, a channel that is in the 

Bad state will have its tries_now counter set to 1, even if the value of tries_needed for that channel 
is > 1. This would eliminate the above delay in reasserting the beam inhibit control line. One 
wrinkle for this solution is that, for the case of a channel for which the first alarm scan after an 
alarms reset is Good, this tries_now count remains at 1, until the first cycle on which a Bad 
condition is found. This serves to eliminate the filtering action for that channel the first time a Bad 
condition is found following an alarms reset. As for why one would expect this to occur, one can 
easily imagine such a case due to the hysteresis logic associated with analog alarm scanning. While 
a channel is in the Bad state, its reading must be found to be within half a tolerance of the nominal 
value before it can be accepted as Good.

Solution 2
Another solution is to use a new counter that counts down the cycles following an alarms 

reset, assuming that the beam is currently inhibited at that time. During each alarm scan, a count 
of channels having the beam inhibit flag set that are found to be Bad is accumulated. After the 
alarm scan, this count is checked, and if it is nonzero, the beam inhibit control line is asserted; 
otherwise, it is lifted. If we also check this new counter that counts down to zero for each cycle 
following an alarms reset, and if that counter is nonzero, use it as an additional determinant for 
inhibiting beam. This would then delay the time when the beam inhibit can be lifted following an 
alarms reset. If we set this new counter to 16, which is the maximum tries_needed supported, then 
this delay is only about 1 second, meaning that an alarms reset action that hopes to remove a 
beam inhibit may take a second before it is actually removed. This allows enough time for the 
confirmation of Bad conditions implied by the tries_needed values.

Caveat
There are two implications of using a tries_needed count > 1 for a given channel. First, it 

naturally causes a delay in emitting a message about a Bad condition. But more importantly, for a 
channel that has the beam inhibit flag set, it delays asserting beam inhibit. If a channel is so 
important as to inhibit Linac beam when in a Bad state, is it advisable to specify tries_needed > 1?

One motivation for setting tries_needed > 1 might be to avoid alarm messages for a channel that 
occasionally has a Bad state, say, because its reading has some noise. If the reading is occasionally 
Bad, but the hardware is actually ok, then using tries_needed = 2 may be valid. But might one 



rather want to improve the reliability of its reading? After all, how can a 15 Hz Linac control 
system work well if its readings cannot be believed for every 15 Hz cycle? In the early days, the 
alarm system served to help us become aware of unreliable readings.

Consider another case. The low energy tank quad power supplies are set to inhibit beam, and they 
have tries_needed values = 2. If one of these pulsed supplies occasionally misfires, then one will 
not get a message about it nor have Linac beam inhibited because of it. But that does not mean 
that all is well. Every time it misfires, beam was accelerated through the Linac with a Bad power 
supply reading. More significantly, this occurs without any notification by the alarm system that 
things are amiss. If one used tries_needed = 1, then one would see such occurrences, and perhaps 
be able to focus on what hardware needs to be looked at for the next shutdown. The price would 
be that beam would be inhibited on the cycle following a misfired power supply. But this may be a 
price worth paying.

Alarm scan at 15 Hz
Almost all Linac data is updated in the local data pool at 15 Hz, refreshed with new readings 

each cycle starting about 1 ms following the Linac beam time. But for a few signals, the hardware 
may be refreshed less often than 15 Hz, including data obtained from a PLC at a more leisurely 
rate, such as 2 Hz or 4 Hz. For such cases, the Linac alarm scan is still done at 15 Hz, based upon 
the latest readings residing in the data pool. If one needs to use tries_needed > 1 for such slower 
devices, one may want to take this slower refresh rate into account.

Conclusion
The complete Linac alarm scan operates on every Linac 15 Hz cycle and can be expected to 

help avoid unnecessary loss of beam. (With current PowerPC-based front ends, this alarm scan 
takes less than 1 ms.) Although it cannot prevent a beam pulse from being accelerated under bad 
conditions, it can prevent it from being accelerated on the following cycles, as long as any channel 
remains in the Bad state. But this statement of immediate reaction to inhibit beam pulses cannot be 
taken literally for a channel that specifies tries_needed > 1. For this reason, careful determination 
of such cases should be made, with full understanding of the implications stated here.

Details
The maximum number of tries_needed that can be specified is 16. This value resides in the 

alarms flag word, occupying the low 4 bits. For tries_needed = 1, this nibble is 0x0, for 
tries_needed = 2, it is 0x1, etc. For the maximum tries_needed = 16, the nibble is 0xF. The 
corresponding counter is also a 4-bit field, which occupies the upper 4 bits of the trip count word, 
with the lower 12 bits holding the trip count itself, a count of all good-bad or bad-good transitions. 
Because of this, the number of trips is half this count value, which limits it to 2047.

During the alarm scan, if the tries_needed counter is to be incremented, the above nibble is 
actually decremented, and if doing so causes it to go negative, it has reached the full count.

The alarm scan not only scans for analog channels, but it also scans binary bits. The latter can 
output Classic protocol alarm messages, but these are not passed to Acnet’s AEOLUS alarm 
handler. To support digital alarms for Acnet, one must use the “combined binary status word” 
scheme, in which readings can be built comprising bits of status sampled from here and there in 
the digital data pool. These readings are placed in the analog data pool, with a special alarms flag 
bit denoting that alarm checking will use digital pattern matching logic, not numerical comparison.

Alarms Reset Considerations p. 2


